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Various difficulties can be expected in trying to extract from experimental data the 
distribution of singularities, the f(a) function, of the energy dissipation. One reason 
is that the multifractal model of turbulence implies a dependence of the viscous 
cutoff on the singularity exponent. It is an open question if current hot-wire probes 
can resolve the scales implied by exponents a significantly less than 1. 

Two exactly soluble models are used to show how spurious scaling can occur, due 
to finite Reynolds number effects. In  the Gaussian model the true velocity signal is 
replaced by independent Gaussian random variables. The dissipation, defined as the 
square of the difference of successive variables, has trivial scaling in so far as all the 
moments of spatial averages of the dissipation behave asymptotically as a uniform 
dissipation. Still, contamination by subdominant terms requires that scaling 
exponents for high-order moments be identified over an increasingly large range of 
scales. If the available range is limited by the Reynolds number, scaling exponents 
for high orders will be systematically underestimated and spurious intermittency will 
be inferred. Burgers’ model is used to highlight further problems. At finite Reynolds 
numbers, regions with no small-scale activity (away from shocks) have a residual 
dissipation which contributes a spurious point (a = l,f(a) = 1). In addition, when 
the f(a) function is obtained by Legendre transform techniques, convex hull effects 
generate an entire spurious segment. 

Finally, Burgers’ model also indicates that the relation between exponents of 
structure functions and exponents of local dissipation moments, which goes back to 
Kolmogorov’s (1962) work, leads to an inconsistency for structure functions of low 
positive order. 

1. Introduction 
In the early 19609, Oboukhov (1962) and Kolmogorov (1962) proposed a 

modification of the celebrated Kolmogorov (1941 a) theory. They assumed that 
spatial fluctuations of the energy dissipation are ‘intermittent ’, that is, increase 
when considering finer and finer scales in the inertial range. They showed how such 
fluctuations can lead to scaling laws for structure functions which deviate from the 
K41 predictions. For a modern perspective on the history of intermittency, the 
reader is referred to Friach (1991) and other papers in the special issue of PTOC. Roy. 
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SOC. A devoted to A. N. Kolmogorov (vol. 434, 1991, pp. 9-217). Here, we shall 
comment only on aspects of this subject directly relevant to our present study. It has 
been observed by Parisi & Frisch (1985) that an alternative description of 
intermittency is through the spectrum of singularities of the velocity field. In the 
Parisi & Frisch multifractal model it is assumed that the singularities can be 
characterized by a continuous range of scaling exponents h. For any h in this range, 
there is a set Y h  in R3 of Hausdorff dimension D(h) such that, when rEYh,  the 
velocity increment 

behaves for small 1 (in the inertial range) as 

Su(r,Ze) = u(rf1e)-u(r)  (1) 

16u(ry 
VO 

- (tr for r E Yh c R3 ; dim SP, = D(h).  

Here, vo is the r.m.s. fluctuating velocity, 1, the integral scale, e is an arbitrary unit 
vector and D(h) is assumed to be universal. This multifractal assumption leads to a 
set of scaling exponents 5, for the structure function of order p .  The function 5, is 
essentially the Legendre transform of D(h).  A general class of cascade models of 
intermittency, introduced by Mandelbrot (1974) and generalizing models due to the 
Russian school (see Monin & Yaglom 1975), was reinterpreted by Parisi & Frisch 
(1985) in terms of local scaling exponents. Recently, this led to a prediction of a new 
form of universality for the dissipation range, permitting in principle the 
measurement of D(h) from the energy spectrum (Frisch & Vergassola 1991). This 
prediction has already received some experimental validation (Gagne & Castaing 
1991). Similar universality has also been observed in a convection experiment (Wu 
et al. 1990). 

The concept of multifractality has proved particularly fruitful in the charac- 
terization of attractors in dynamical systems (Benzi et al. 1984; Halsey et al. 
1986). Very accurate measurements of the distribution of singularities (called f ( a ) )  
have permitted detailed confirmation of theoretical predictions (Bensimon, Jensen & 
Kadanoff 1986; Glazier et al. 1986). Actually, the concept of a multifractal originated 
from an attempt to interpret experimental data on fully developed turbulence 
(Anselmet et al. 1984). Still, the experimental difficulties in measuring the distribution 
of (quasi)singularities in physical space-time for fully developed turbulence are far 
greater than the measurement of singularities of attractors in phase space for low- 
dimensional dynamical systems. 

It is our purpose, here, to analyse from a theoretical viewpoint some of the 
difficulties one can encounter in extracting the multifractal properties of the energy 
dissipation from experimental data, as was attempted in the pioneering work of 
Meneveau & Sreenivasan (1987, 1991). Our paper is organized as follows. Section 2 
is devoted to the relations between two multifractal descriptions of turbulence, one 
operating at  the level of structure functions and the other at the level of the energy 
dissipation. In $3 we discuss general principles involved in obtaining the so-called 
f (a)  function from one-dimensional cuts. In $$4 and 5 we list and then discuss the 
main approximations involved in the practical procedures used. Specific difficulties 
are highlighted by studying two exactly soluble models in §$6 and 7. Concluding 
remarks are made in $8. 
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2. The two approaches to multifractals in turbulence 
Some of the material in this Section is well-known and is covered in more detail, 

for example, in Meneveau & Sreenivasan (1987). 
The Parisi & Frisch formalism works entirely with inertial-range quantities. From 

the basic assumptions of homogeneity, isotropy and of local scaling with exponent 
h on sets of Hausdorff dimensions D(h),  it follows that the longitudinal structure 
function of order p ,  

behaves in the inertial range as a power law: 

fi,(O = ( ( e . W ,  le))”) ,  (3) 

S,(l) cc 1 s ~  with C p  = min, @h+3-D(h)) .  (4) 

Of course (4) is valid only over inertial-range scales. It must be stressed that the 
extent of the inertial range depends on the order of the structure function under 
consideration. Indeed, under the assumption of convexity, D”(h) < 0, there is a single 
scaling exponent h,@) which minimizes ph+3-D(h).  Unless D(h) is a trivial 
function (as in Kolmogorov 1941a), h*@) will vary with p .  A simple turnover-time 
argument (Paladin & Vulpiani 1987) shows that the viscous cutoff 7 depends on the 
scaling exponent h through 

where R = l,v,/u is the Reynolds number ( u  being the kinematic viscosity). It follows 
that, at high Reynolds numbers, scales much smaller than the Kolmogorov scale, 
obtained by setting h = $ in (5) ,  are relevant in studying multifractal properties. The 
relation ( 5 )  has also been noted by Meneveau & Nelkin (1989) and has been used by 
Frisch & Vergassola (1991). Experimental attempts to check ( 5 )  are now being made 
(see e.g. Van de Water, Van der Vorst & Van de Wetering 1991). 

We turn now to the second form of multifractality, based on the energy 
dissipation. Here, the key quantity is the spatial average of the energy dissipation 
over a ball of radius 1 centred at the point r, fist considered by Oboukhov (1962) and 
Kolmogorov (1962) : 

It is now assumed that, when the viscosity u is small, q ( r )  has the multifractal 
property. This means, roughly, that 

Note that el(r) and 1 have been respectively divided by v;/l,, (the order of magnitude 
of the mean dissipation) and 1, (the integral scale) to obtain dimensionless quantities. 
By a standard steepest-descent argument, it follows now that for small I 

v3 9 1 TP 

lim(4) - (f) (G) , 7g = rnina[q(a-1)+3-F(a)]. 
W O  

Note that the averaging in (8) is typically a time average, implying the limit t+. a, 
which must be taken before the limit Y +. 0 ; the limit 1 + 0 being taken last. Any other 
order could lead to contradictions. 
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We now observe that Kolmogorov (1962) proposed to relate the fluctuations of 
velocity increments and those of the space-averaged dissipation. His ‘first and 
second hypotheses ’ imply the following result for the asymptotic behaviour when 
1+0 (after the limit v+O has been taken): 

em ~ v ( r ,  Ze) = S  (e l (r)  I ) ) .  (9) 

Here, the symbol = means that the two quantities have the same scaling properties, 
so that the scaling exponents are the same for corresponding moments of arbitrary 
order. Equation (9) is essentially the Kolmogorov (1941 a )  assumption, reformulated 
locally in terms of fluctuating quantities. This assumption is clearly consistent from 
the viewpoint of dimensional analysis. Furthermore, the third-order moments of the 
left- and right-hand sides of (9) have exactly the same scaling (proportional to Z’) as 
follows from Kolmogorov’s ‘ - 5 ’  relation for the third-order structure function 
(Kolmogorov 1941b; see also Frisch 1991). Still, (9) has never been established 
convincingly. Bacry et al. (1990) have questioned its validity when it is used to 
evaluate moments of negative orders. On Burgers’ model it may be shown that 
inconsistencies arise for moments of positive fractional orders less than 1 (see $7).  

Equation (9) has been mostly taken for granted and immediately implies that one 
can bridge the two multifractal formalisms described above. Indeed, it follows from 
(21, (41, (71, (8) and (9) that 

Similarly, the viscous cutoff, given by (5 ) ,  can be re-expressed in the energy 
dissipation multifractal formalism as (the subscript ‘ diss ’ stands for ‘dissipation ’) 

In bridging the two multifractal formalisms, we have chosen notation which 
preserves (i) the standard Kolmogorov definition of el(r)  and (ii) the equality of the 
two dimensions F ( a )  and D(h) of (presumably) identical fractals in R3. 

Very accurate and independent measurements of (D(h), &) and of (F(a) ,  7*) will be 
needed to find out more about the validity of Kolmogorov’s relation (9). 

3. The singularity spectrum from one-dimensional cuts 
A genuine three-dimensional processing of turbulence data to measure the 

multifractal properties of the energy dissipation is at the moment feasible only for 
numerically simulated flows. These are however limited in Reynolds numbers to 
regimes where scaling just begins to manifest itself, thus making reliable 
measurements of multifractal properties difficult. Present experimental techniques 
have access to the two-dimensional structure of passive scalars (Prasad, Meneveau & 
Sreenivasan 1989; Miller & Dimotakis 1991) and only to the one-dimensional 
structure of the velocity field. Here, we are only interested in the latter. Mandelbrot 
(1974) has shown that for homogeneous fractals of dimension F ,  the fractal 
dimensionfof one-dimensional cuts isf = F - 2 .  This relation remains valid (in so far 
as f controls probabilities) even when f becomes negative (Mandelbrot 1991). In  
processing the energy dissipation it is usually assumed that it behaves as a 
homogeneous multifractal, as far as its statistical properties (in the limit of zero 
viscosity) are concerned. Thus, one-dimensional space averages of the dissipation can 
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be used as ‘representatives ’ of the three-dimensional averages. Specifically, one 
considers a one-dimensional line L with coordinate x and, instead of (6), one uses 

Ez(x) = 1 ~ ; v  (a, wf(x/) +a, w,(x/))2. (12) 
z’--zI < I  $5 

Similarly, instead of (7), it  is assumed that, for small v, e l@)  behaves as follows : 
a-1 

as Z - t O  for ~ € 9 : ;  dim9:=f(a), - (i) 
where 9: = ga n L and f(a) = F(a)  - 2. 

To recover the functionf(a) from measurements of the fluctuating local dissipation 
q(x), there are two main strategies. 

The moment method has the following steps : (i) measure ((@), in principle for 
arbitrary real q - the average can be taken over time; (ii) find the asymptotic 
behaviour for 1 --f 0 and identify its leading order with a power law cc Fa; (iii) perform 
an inverse Legendre transform to obtain 

(15) f (a )  = min, [q(a- 1) + 1 - T ~ ] .  

This relation is obtained by inversion of (8) and use of (14). 
The binning method comprises the following steps: (i) measure the probability 

distribution function (p.d.f.) P(B,  1)  of q for given 1 ;  (ii) plot InP(s, Z)/ln 1 ws. In ( le) / ln I 
for different 1 ; (iii) in the limit 1 -+ 0, all the plots collapse onto a single graph which 
corresponds to the map 01 H 1 - f (a ) .  

The practical procedure is somewhat more elaborate because of the need to define 
binning intervals for the dissipation and the need to correct for the finiteness of the 
external scale (here, the integral scale Zo). For details, see Grassberger, Badii & Politi 
(1988) ; Politi, Badii & Grassberger (1988) ; Meneveau & Sreenivasan (1989). 

4. Obtaining f (a )  from experimental data 
All existing attempts to measuref(a) for the velocity field are based on hot-wire 

techniques in the presence of a mean flow (wind tunnels, jets, etc.). In order to discuss 
the possible problems in the determination of f(a), we shall briefly review the main 
approximations involved in the experimental process. We shall concentrate on what 
we called in $ 3 the ‘ moment method ’. The limitations for the ‘binning method ’ are 
quite similar. 

We shall not, here, be concerned with novel non-intrusive techniques which are 
still under development and have the potential of avoiding some of the difficulties we 
shall now stress. 

In practice, the determination of f (a) ,  as described in $2, has to be accompanied 
by some approximations which are now listed (without trying to be exhaustive). 

(i) Assume a fixed, small, viscosity v, i.e. drop the operation lirn-,, in (8). 
(ii) Instead of the full squared deformation tensor appearing in (12), use just 

(au/i3x)z, the square of the streamwise derivative of the streamwise velocity 
component. 

(iii) Use the Taylor hypothesis to substitute time derivatives for space derivatives : 

where 0 is the mean velocity. 
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(iv) Approximate time derivatives by time differences over the sampling time St 
of the probe-recorded signal up: 

au i 
- x - [up( t+8 t ) -up( t ) ] .  
at st 

(v) Calculate (ef) by time averaging for the largest possible range of values of the 
exponent q, including for negative q. 

(vi) Identify (sf) with a pure power-law 17p (times a constant) over the estimated 
inertial range. This is typically done by least-mean-squares fitting of log(+ ws. 
log1 to a linear function. 

(vii) Perform a numerical Legendre transformation on T~ to obtain f (a ) .  

5. Shortcomings of the processing technique for f(a) 
In this Section, (i)-(vii) refer to the enumeration of the preceding Section. 
Assumption (i) (finiteness of the viscosity) may produce a spurious point in thef(a) 

function : 
a = 1,  f(a) = 1. (18) 

Indeed, let us assume that, in the one-dimensional cuts, there are quiescent regions 
in the flow, filling a finite fraction of space, where the velocity is regular in the 
following sense : there is no appreciable small-scale activity, so that the velocity 
gradients au/az, are O(wo/Zo). In the limit v+O (assuming the limit exists) such 
regions do not contribute to the energy dissipation. Still, for finite v, the local average 
E&) of the dissipation over a small distance 1 will be O ( V ( W , / Z ~ ) ~ ) ,  independent of 1. By 
(13), this implies an exponent a = 1 on a set of dimension f ( a )  = 1. Equation (18) 
follows. We also observe that moments of negative order of the dissipation, which are 
infinite under the assumption of quiescent regions, will be rendered finite with 
spurious scaling as soon as some viscosity, however small, is present. Such 
phenomena are illustrated in $7 on Burgers’ model. 

The main shortcoming of (ii) is the assumption that the quantity ( a u / a ~ ) ~  is a 
faithful representative of the full dissipation, as far as scaling laws are concerned. 
Note that the scaling laws obtained with the squared vorticity and the squared 
deformation (involving respectively the antisymmetrical and the symmetrical parts 
of the tensor 3, wj) need not be the same. For example, Brachet (1990) gives evidence 
(based on a high-resolution simulation of the Taylor-Green vortex) that the 
correlation function of the squared vorticity and that of the squared rate of strain 
have different scaling laws. 

We have nothing to add to the well-known limitations of the Taylor hypothesis 
(iii) . 

The most serious shortcoming of (iv) has to do with the probe size. With current 
technology, hot-wire probes are usually of diameter of the order of 1 pm and length 
of the order of 1 mm. Thus, signals are smoothed over a distance of about 1 mm. The 
Kolmogorov microscale qK for most flows for which measurements off(a) have been 
attempted is between 0.1 and 1 mm (see, for example, table 1 of Meneveau k 
Sreenivasan 1991). This in itself is not necessarily a serious shortcoming, since the 
Kolmogorov microscale is about one order of magnitude smaller than the actual scale 
at  which the energy spectrum begins to bend away from the -5 law (see, for example, 
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figure 75 of Monin & Yaglom 1975). The scale a t  which most of the mean dissipation 
resides, is typically a factor 20 larger than "lK. To obtain a well-resolved dissipation, 
experimentalists usually resort to probes no longer than 5vK. 

A more serious difficulty in the present context is the following. Suppose one 
accepts the multifractal model, as is necessary to give a meaning to an f ( a )  
measurement. Then, an unavoidable consequence is that the viscous cutoff, given by 
( l l ) ,  is dependent on a. The smaller a, the smaller the viscous cutoff, particularly at 
high Reynolds numbers R. As an example, let us consider the wake and boundary- 
layer data analysed by Meneveau & Sreenivasan (1987, 1991). The corresponding 
Reynolds numbers, based on r.m.s. velocity fluctuations and integral scale, are 
respectively R = 728 and 967. They report, in figure 24 of their 1991 paper, values 
of a down to a minimum amin = 0.35. We then have, by (11), 

It follows that the minimum dissipation scale is 2.68 times (resp. 2.8 times) smaller 
than the Kolmogorov microscale for the wake (resp. the boundary layer). The actual 
numbers are ?Imin = 0.1 mm (resp. qmin = 0.06 mm) for the wake (resp. the 
boundary layer). The probe used in these experiments had a length of 0.7 mm. Thus 
the probe was 7 (resp. 12) times larger than the value of ymin. It is not clear if such 
ratios are sufficiently small for the corresponding small-a events to be well resolved. 
It will be of interest to repeat the same experiments with probes shorter by at  least 
a factor two or by non-intrusive high-resolution methods. Let us stress that the 
actual existence of dynamically significant events taking place on such minute scales 
depends heavily on the validity of the multifractal model (see $8). 

Item (v) (time-averaging) is a well-known difficulty in experimental measurement 
of moments, especially for high-order ones. Similar problems, arising in the 
measurement of high-order structure functions are discussed in Anselmet et al. 
(1984). 

Item (vi) (the identification of (q) with a pure power law) is a source of concern 
for large q. Equation (8) indicates that, for 1 sufficiently small compared to the 
integral scale and sufficiently large compared to dissipative scales, a pure power law 
is obtained to leading order. Yet, suppose that at finite Reynolds numbers there are 
correction terms involving a (suitable) dissipation scale qq, so that, instead of (8), we 
have 

a correction which vanishes with qq in the infinite Reynolds number limit. If the 
correction term has a positive sign, it will lead to underestimating the actual value 
of 7q. An interesting example is provided by the Gaussian model discussed in 56, for 
which all the T~ are zero because the asymptotics are dominated by the mean 
dissipation rate. Still, because of the admixture of I-' terms (with a positive 
coefficient O(q2)), the empirically determined 7q may appear to have a non-trivial 
multifractal dependence on q, for large positive or negative q (see $6). The Gaussian 
model is directly relevant if the flow possesses quiescent regions in which the 
instrumental noise dominates over the very small viscous dissipation signal ; 
moments of negative order of the dissipation are then rendered spuriously finite 
again, but by a mechanism different from that discussed above in connection with (i). 
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This could happen for example when the probe occasionally encounters irrotational 
fluid; however, such events were not detected in the experiments of Meneveau & 
Sreenivasan (Meneveau 1991, personal communication). The effect of weak noise on 
moments of positive order, on the other hand, appears to be negligibly small. 

Item (vii) (the numerical inverse Legendre transform) can lead to various errors. 
The Legendre transform, when performed by a derivative technique, is ill- 
conditioned for noisy data. A more fundamental problem is the fact that the 
Legendre transform of a non-convex function is the same as the Legendre transform 
of its convex hull. Suppose, for example, that f (a)  is defined only for discrete values 
at of a. An attempt to reconstruct f ( a )  from its Legendre transform T* will then 
produce, in addition to the discrete points (ai , f (aJ) ,  the spurious line segments 
forming the convex hull of that set. An example of this effect, using Burgers' model, 
is discussed in $7 .  It is likely that the binning method mentioned a t  the end of 93 is 
more capable of revealing discrete points when they exist. 

6. A Gaussian model 
Our Gaussian model is intended to show how spurious multifractality can arise 

from lack of asymptoticity. 
The Gaussian model is defined by a sequence of Gaussian random variables 

s,,j = 1,2, . . . . The variables are assumed independent, real, of zero mean value and 
equal variance u2 = (s;). The variable s, should be thought of as a time series 
sampled a t  t = jSt : 

Thus, the Gaussian model is just a discrete version of white noise. 

s( j8 t )  = s,. (21) 

In  accordance with (17), we define the local dissipation as 

€(j) = (sj+l -s,)? (22) 
Note that constant factors, such as St-?-, are irrelevant for the scaling properties. We 
also define the J-averaged dissipation, the discrete analogue of e l :  

l J  
BJ = - €(j). (23) 

J ,-1 

The scaling exponents T* for the Gaussian model are defined as usual in terms of 
the asymptotics of moments of the J-averaged dissipation : 

(€5) oc J T q ,  J+ 00. (24) 

The condition J+ m selects 'inertial-range scales'. Indeed, in the Gaussian model, 
the dissipation scale is O( 1) and the integral scale is infinite. The interesting property 
of the Gaussian model is that the behaviour of moments of the J-averaged 
dissipation for large J has a simple expression (derived in the Appendix) : 

(€5) R ( 2 ~ ' ) * ( 1 + ~ ( q - l )  J-l+O(J-')), J+ m. (25) 

This expression is valid for both positive and negative integer q. The existence of 
moments of negative order when J is large enough is proved in the Appendix. 

We observe that the leading-order behaviour of the qth moment of the J-averaged 
dissipation is simply the qth power of the average dissipation 2u2. The correction 
term in (25) can also be obtained by evaluating the (approximately) Gaussian 
fluctuations of eJ around its mean value. 
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FIGURE 1. Fourth-order moment of the dissipation ( ~ f )  l4 obtained with the Gaussian model, in 
log-log coordinates. The straight line is a least-square fit to a power law over a range of scales of 
two decades. It gives a spurious exponent 3.8 instead of 4. 

It follows from (24) and (25) that 

7* = 0, vq. 

Thus, from a scaling viewpoint the Gaussian model behaves as a uniform dissipation. 
from a numerical experiment 

in which we generate a large number of independent Gaussian random variables 8,. 

We can then try to obtain 7* by plotting ( € 5 )  88. J in log-log coordinates and 
measuring the slope. It follows from (25) that pure scaling with the exponent 
T* = 0 will be seen only if the correction term is negligible. The condition for this is seen 
to be 

Suppose now that we try to measure the exponents 

J B Id!?-1)l. (27) 

Thus, for large orders (positive or negative), it  is necessary to have data over an 
increasing range of scales, growing proportionally to IqI*. Otherwise, contamination 
by the subdominant terms will result in underestimating of the scaling exponents 
associated with large orders and hence to spurious intermittency . 

To illustrate this phenomenon we shall now take Gaussian data and process them 
in a way similar to what is done with experimental turbulence data. In  typical 
turbulence experiments involving hot-wire probes, the sampling frequency is 
between the frequency corresponding to the Kolmogorov dissipation scale 7 and one- 
tenth thereof. One way to delimitate the inertial range, suggested by Anselmet et al. 
(1984), is to plot the third-order structure function. One then identifies the range of 

16 FLM 238 
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FIGURE 2. Variation of the (spurious) scaling exponent 79 with the order of the moment. Same 

conditions a~ in figure 1. The graph of T* ,  being curved, implies spurious multifractality. 

scales over which this structure function follows Kolmogorov's (1941 b)  -@ law. 
Typically, the bottom (smallest scale) of the inertial range is around 3011, 
corresponding to three to thirty successive samples. The position of the upper limit 
depends of course on the Reynolds number. For the highest Reynolds number data 
analysed in this way (Castaing, Gagne & Hopfinger 1990), the inertial range does not 
span more than two decades. 

We were thus led to conceive the following computer experiment. We used our 
Gaussian model and measured the apparent scaling exponent of the moments of the 
dissipation over a range of values of J .  This range begins at J = 10 (had we taken a 
smaller value, the spurious effects would be stronger ; with a larger value they would 
be weaker) and extends over two decades. The (apparent) scaling exponents G P P  for 
the moments of the dissipation of order up to ten are determined by least-square fits 
to a power law in logarithmic variables. An example is given in figure 1, where we 
have represented (in log-log coordinates) the fourth-order moment (e:), multiplied 
by Z4 to make the slope positive. The straight line, which is a least-square fit in the 
interval 10 < J < 1000, has slope 3.8f0.04. Hence e P P  = -0.2+0.04, instead of the 
correct value r4 = 0. In  figure 2, we represent the graph of riPP for 0 < q < 10. It is 
seen to drop to increasingly negative values and displays curvature. The inverse 
Legendre transform ( 15) would then produce a spurious non-trivial f(a) spectrum. 
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7. Burgers’ model 
In this section we use Burgers’ model to illustrate several possible shortcomings of 

the multifractal analysis. There is a considerable wealth of knowledge about this 
model. For what we need here, the main references are Burgers (1974), Hopf (1950), 
Cole (1951) and Fournier & Frisch (1983). 

7.1. Summary of key results for Burgers’ model 
Burgers’ equation can be written either in terms of a velocity field w as 

a,v(t,z)+va,W = va;v, (28) 

= --az$. (29) 

or in terms of a stream function 1G. such that 

The latter satisfies a , ~ ( t , s ) - ; ( a , + ) 2  = va;+. 
The H o p d o l e  transformation 

reduces (30) to the heat equation 

$ = 2v In 8 

In the absence of boundaries, the initial-value problem 

w44 = $ 0 ( 4  (33) 

has the following solution, a consequence of the Hopf-Cole transformation (t > 0) : 

where (35) 

From (34), it  follows by a steepest-descent argument that in the inviscid limit 

$( t ,  z) = max,F(t, x, y) for v-t 0. (36) 

In  view of (35) this means that, in the inviscid limit, @,(y)-y2/(2t) and 
$(t, x )  +x2/ (2 t )  are essentially Legendre transforms of each other. 

When the initial condition has bounded velocity gradients, @o(y)  - y2 / (2 t )  is 
convex in y, for sufficiently short times (because - y2 / (2 t )  is large and convex and +,(y) 
has bounded second derivatives). For such times the Legendre transformation is 
smooth. After some time, singularities will develop, corresponding to those y where 
the convex hull of $0(y) -y2 / (2 t )  departs from the function itself. In  terms of the 
velocity w ( t ,  z ) ,  this means that there are shocks, i.e. positions q ( t )  where the velocity 
has a finite discontinuity. 

Our interest will be in the typical behaviour of solutions for r a d m  initial 
conditions. Specifically, we assume that the initial conditions are random, 
homogeneous (statistical properties invariant under space-translations), have zero 
mean value and are smooth (for non-smooth initial conditions, see She, Frisch & 
Aurell 1992 and Sinai 1992) with a single lengthscale and a single velocity scale, both 
taken to be unity. An instance of this would be Gaussian initial conditions with zero 
mean value and a spectrum exp ( - k 2 ) .  There is no need here to be too specific, since 
our arguments will be mostly phenomenological, a fully rigorous version of the 

16-2 
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FIGURE 3. Sketch of the spatial structure of the solution to Burgers’ equation in the inviscid limit 
with random initial conditions and all characteristic scales 0(1) : (a) initial condition; (b) solution 
at  t = O(1). 

subsequent arguments would of course need a hardening of the assumptions. We 
shall be interested in the solutions of Burgers’ equation for times O(l) ,  sufficiently 
long to have formed shocks (for the very long-time regime, see Kida 1979). Figure 3 
shows a typical sketch of the spatial aspect of the initial condition (in terms of the 
variable v )  and of the evolved solution w ( t ,  x) after a time O( 1) in the inviscid limit. 

The following properties of v(t, x), for fixed t = O( l), which are consequences of the 
Hopf-Cole solution, will be relevant for our subsequent arguments : 

(i) v(t, x) is a random homogeneous function of x with zero mean value ; 
(ii) v(t, x) is smooth in z with O(1) space derivatives, except at  discrete points xi; 
(iii) the points xi (shocks) are distributed homogeneously with O(1) spacing 

between successive points ; 
(iv) at any point xt the velocity has a negative discontinuity 6v, which is O(1). 

Note that the fact that everything is O( 1) is an immediate consequence of our choice 
of units. The above properties hold in the inviscid limit. If a finite small viscosity is 
assumed, (ii)-(iv) must be modified as follows: 

(v) the above discontinuities are replaced by smooth, but steep transition regions 
with a tanh profile and a width O ( v ) ,  which for Burgers’ model plays the role of the 
dissipation scale. 

We mention that all the above properties are generally believed also to hold when 
Burgers’ model includes a random force, such that all spatial, temporal and 
amplitude scales are O(1). 

Let us now consider the implications from the viewpoint of the multifractal 
analysis. We shall deal successively with the two multifractal approaches : structure 
functions ($7.2) and dissipation moments ($7.3). In each case, we consider first the 
inviscid limit and then the effect of a finite small viscosity. The notation used 
hereafter is consistent with our definitions for the Navier-Stokes case. For example, 
Sv,(x) is the velocity increment (now a scalar) and q ( x )  is the energy dissipation in an 
interval of length 1 centred around 2, divided by 1. All the statistical quantities will 
be evaluated for scales 1 in the inertial range, i.e. for 

1BZBV. (37) 
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FIGURE 4. Exponents 6 of structure functions for Burgers’ model. 

FIGURE 5. D(h) function for Burgers’ model. Points A and B are genuine. The segment is an 
artefact of the reconstruction by Legendre transformation. 

7.2.  Structure functions for Burgers’ model 
To evaluate the structure functions ((Sw#’), we must consider separately the 
contributions of shocks and of smooth regions. Since the inter-shock spacing is O( l), 
in an interval of length 1 satisfying (37), there is a probability O(2) of having a shock 
and 1 -O( l )  x 1 of having no shock. In  other words, the singularity structure of the 
velocity field is bifractal : there is a set of dimension D = 0 (the shocks) on which the 
singularity exponent is h = 0 (discontinuities) and another set of dimension D = 1 on 
which the exponent is h = 1 (regular behaviour). Hence, the structure functions of 
order p > 0 may be written (cf. $2) 

(38) 

where c1 and c2 are two 0(1) constants. For small 1 the power law with the smallest 
exponent dominates. Hence, 

( (SWI)P) - c1 I’ + c2 P, 

( ( S v I ) p )  - h, cP = min (p, 1). (39) 

The graph of cP given by (39) is shown in figure 4. If a finite small viscosity is 
included in the derivation, no modification is found to leading order (the situation 
will be different in $7.3). 

We observe that (39) is just a special case of the Legendre transform formula (4), 
adapted to the one-dimensional case, 

cp = min, (ph+ 1 -D(h)) .  (40) 

Indeed, the function D(h) has just two points A (h = 0 , D  = 0) and B (h  = l ,D  = 1). 
An interesting observation can now be made. Suppose we wish to recover the 

function D(h) by performing the inverse Legendre transform of (40) : 

1 -D(h) = maxP (cp-ph) .  (41) 

A simple calculation then produces the function shown in the graph in figure 5.  In 
addition to the two aforementioned points A and B, D(h) has now a spurious segment 
of points joining them. This is because by performing a Legendre transform and then 
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A 

FIQTJRE 6. Exponents T~ for moments of the space-averaged dissipation for Burgers’ model 
(inviscid limit). 

its inverse, we recover not the original function but its convex hull. Spurious results 
of this sort are known in other areas of dynamical systems (Grassberger et al. 1988; 
Artuso, Aurell & Cvitanovid 1990a, b ) .  

7.3. Dissipation moments for Burgers’ model 

We turn now to the moments of the space-averaged dissipation el .  It is here essential 
to distinguish the cases of vanishing viscosity and of small viscosity. In  the former, 
all the dissipation is concentrated at the shocks (a = 0, f(a) = 0)  while in the latter 
there is a residual small (O(v ) )  dissipation a t  regular points (a = 1, f(a) = 1). 

We begin again with the inviscid limit. The probability of an interval of length 
1 4  1 intercepting a shock is 0(1) (see $7.2). When a shock is present, the total 
dissipation in such an interval is O(1) (it is proportional to the cube of the velocity 
discontinuity). It follows that moments of positive order q are given by 

( ( E l ) * )  17q, 7q = i - q .  (42) 

For negative q the moments are infinite, since there is a finite probability of having 
a vanishing dissipation in an interval of length 1. The graph of 7* given by (42) is 
shown in figure 6. Here, we detect an inconsistency with the relation (10) based on 
bridging the two multifractal formalisms via Kolmogorov’s relation (9). Indeed, (10) 
and (42) imply 

which is identical to (39) only for p 2 1. The reason for the discrepancy is that the 
D(h) function has two points (see the beginning of $7.2) while the f(cc) function has 
a single point, corresponding to shocks. 

cp = 1, (43) 

Turning now to the case of finite small viscosity, we obtain 

( ( E l ) * )  - c3 v4zo + c4 11-4, (44) 
where c3 and c4 are O( 1) constants. The first term on the right-hand side of (44) is the 
contribution of the residual O ( v )  dissipation outside of the shocks, while the second 
comes from the shocks. If we were just to take the smallest exponent in (44) to find 
the small4 behaviour, we would obtain 7* = 1 - q for q 2 1 and 7* = 0 for q < 1. This 
is however incorrect since we cannot take 1 smaller than the viscous cutoff, which is 
O(v)  (see (37)). Comparing the first and second terms on the right-hand side of (44), 
we find that the power law with exponent 1 -q  dominates for all q > t.  For q < t ,  the 
fkst term in (44) dominates at sufficiently small inertial-range scales. We thus obtain 

l - q  for q > i ;  
74={0 for q <i, (45) 
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q - 7 L - r  
FIQURE 7. Same as figure 6 but including the effect of a finite small viscosity. 

C I 0.5 1 
L 7  

FIQURE 8. THE f(a) function for Burgers’ model. Only point C is genuine. The point D and the 
segment G E  are artefacts of two reconstruction methods when a finite small viscosity is included. 

the graph of which is shown in figure 7. Note that the moments of negative order 
have become finite through the effect of viscosity (in an interval of arbitrary small 
length 1 there is always a positive residual dissipation). Note also that the function 
7* is not convex. 

If we try to reconstruct the function f(a) from T ~ ,  we have a choice between two 
evils. First, we can identify the different discrete slopes s1 = 0 and a2 = 1 present in 
the graph of 7g. Each slope at corresponds to an exponent a such that at- 1 = s, ; the 
associated dimension is given by f(a) = q(a,- 1) + 1 - T ~ .  This method produces two 
points: C (a = O, f (a )  = 0 )  and D (a = l,f(a) = 1) shown on figure 8. The point C 
associated to the shocks is genuine : it  is also present in the inviscid limit. The point 
D is spurious and it is a finite-viscosity effect. Reducing the viscosity will not make 
it disappear. The second method for recovering f (a )  is to perform the inverse 
Legendre transform given by (15). This produces the segment shown in figure 8, 
joining the point C to the point E (a = l,f(a) = a). Except for the point C, the entire 
interval is now spurioua. 

8. Conclusion 
We have found a variety of effects, not reported so far, which can affect the 

determination of the f ( a )  function from experimental turbulence data. If we assume 
that a multifractal description is appropriate for fully developed turbulence, we must 
also accept the consequences, such as the dependence of the viscous cutoff on the 
singularity exponent a and the implications for probe sizes discussed in $5.  But we 
stress that there is still no conclusive evidence that the multifractal description (in 
either of the two ‘ standard ’ versions discussed in $ 2) is really adequate. One possible 
shortcoming of the standard versions comes from high-resolution numerical 
simulations which show that the smallest structures present in the flow are slender 
vortex filaments with circular cross-section (She, Jackson & Orszag 1990; Vincent & 
Meneguzzi 1991). (There is also some recent experimental evidence for these 
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filaments (Douady, Couder & Brachet 1991).) The nonlinear term in these filaments 
vanishes to leading order. It follows that their diameter is much larger than the scale 
obtained by balancing the local turnover time and the viscous diffusion time, as done 
in standard multifractal models. 

By applying the existing multifractal processing techniques to the Gaussian model 
(96) and to Burgers’ model (97),  which are both exactly soluble, we have found 
possible sources of spurious f(a) due to finite Reynolds number effects, namely the 
contamination of leading-order scaling by subdominant terms and the spurious 
scaling induced by a residual finite viscosity in regions without any small-scale 
activity. Being aware of such effects, it may be possible to try to eliminate them, at 
least partially, by carefully comparing data with different Reynolds numbers. For 
subdominant corrections, one can assume that two power laws are simultaneously 
present. For viscous effects, one can try to identify spurious scaling in which the 
constants in front of the power laws display a dependence on viscosity. 

We have also shown that obtaining thef(a) function for the dissipation and the 
D(h) function characterizing multifractality of structure functions are in principle 
two distinct goals. We have shown on Burgers’ model that the scaling properties of 
structure functions of order less than one cannot be inferred from thef(a) function. 
In figure 34 of Meneveau & Sreenivasan (1991) a comparison is made between 
directly measured exponents of structure functions from Anselmet et al. (1984) and 
those inferred via (9) from their measurements of thef(a) function. For low orders, 
both sets of data are very close to the Kolmogorov (1941a) prediction and thus in 
trivial agreement. For high orders, say beyond p = 10, the measurements of the &, 
exponents are considered not fully reliable by Anselmet et al. (1984). The agreement 
can thus hardly be considered as conclusive evidence for multifractality . Moreover, 
direct experimental determination of structure functions and of D(h) may involve 
difficulties beyond those already discussed in Anselmet et al. (1984). 

We also mention that direct measurements of local scaling exponents by wavelet 
transform techniques have been attempted (Argoul et al. 1989; Bacry et d. 1990). 
Some of the difficulties associated with the interpretation of wavelet transforms were 
pointed out by Bacry et al. (1990). In addition, there are indications that this is a 
very noisy technique because it uses only local information, albeit over a wide range 
of scales (Vergassola et al. 1991). 

Disentangling the (presumed) multifractal structure of fully developed turbulence 
is a very challenging task. The validation and the assessment of processing 
techniques for experimental data which has been the focus of the present paper is 
only one aspect. The development of state-of-the-art experiments, using smaller 
probes or non-intrusive high-resolution optical techniques (see e.g. Miles et al. 1989) 
associated with moderate to high Reynolds number flows may well completely upset 
our current views of fme-scale phenomena in fully developed turbulence. 

We are grateful to C. Meneveau, M. Nelkin and V. Yakhot for discussions and 
suggestions. This work was supported by the EEC (SC1-0212-C) and by DRET 
(90/1444). 

Appendix 
In this Appendix we will discuss in more detail the solution of the Gaussian model 

defined in 96. For clarity, we recall that the model considers a sequence of Gaussian 
random variables s,, {j = 1,2, . . .}, independent, real, with zero mean value 
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and having the same variance u2 = (s,"). The local dissi ation is defined as 

interested in the asymptotic behaviour for J-t 00 of the moments of the J-averaged 
dissipation. For convenience, we introduce the moments of the cumulated 
dissipation : 

e( j )  = (s,+~ -s,)~ and the J-averaged dissipation as eJ = (1/J) Y e( j ) .  We are mainly 

E(J,!I) = <(J.,)*). (A 1) 

A.1. The generating function 
The most convenient way to obtain the asymptotic behaviour of the moments E(J, 
q) is through the generating function $(z )  of the random variable Jej. By definition, 

where dsJ denotes integration over all of the J Gaussian variables. As usual, positive 
integer moments can be generated by taking derivatives of $(z)  at the point z = 0. 
In what follows, we shall impose periodic boundary conditions, whereby sJ+l = sl. 
This is done for technical convenience and the corrections coming from this 
hypothesis affect neither the dominant nor the subdominant terms in the limit 
J+ co. 

To evaluate the integral in (A 2), we introduce the new integration variables, 8,, 
( j  = 1,. . . , J) defined as the Fourier components of the discrete signal sj, 
{j = 1, ..., J): 

Note that if J is odd then i,, is real, while the remaining J-1 variables consist of 
complex-conjugate pairs. If J is even, then sJ/2 is also real. Thus, the new integration 
variables are the independent real and imaginary components of the variables i,. 
Calling the (z-independent) Jacobian of this change of variables K, we then have 

512  I 

= K n  
I 

,-o [ 1 + 4a2z( 1 - cos k,)] * 

Here, for convenience, we have taken J to be even. Real and imaginary are denoted 
by r and i respectively. The fact that $ ( O )  = 1 (see (A 2)) implies that K = 1. 
Substituting the definition of k,, taking advantage of the symmetry of the cosine 
and using the formula (1.3.94) of Gradshteyn & Ryzhik (1965) to express the 
resulting product in closed form, we obtain the final result 

Here, we have again invoked the fact that d(0) = 1 to fix the correct signs. From 
(A 5 ) ,  we immediately obtain the asymptotic form 

which is valid for Re z > 0 and large J. Before considering explicit expressions for the 
moments, one simplifying observation can be made about the generating function. 
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Recall that the qth moment (for integer positive q) is determined by taking q- 
derivatives of the generating function with respect to z and then setting z to zero. A 
moment's inspection will show that exactly the same result is obtained using either 
(A 5 )  or the asymptotic form (A 6) provided that q < J. 

A.2. The positive moments 
We turn now to the determination of the asymptotic behaviour of the positive 
moments corresponding to q > 0. This can be done by analytically continuing the 
generating function, #(z ) ,  into the complex plane and taking the inverse Fourier 
transform : 

f(s) = Icdze"#(iz), (A 7) 

( 4 3  

where the path, C, is defined by z(C) = x+ id with the real variable x ranging between 
& ol) and with d > 0 being a fixed positive number. We are interested in the limit of 
large J ,  so that (A 6) can be used. It is now convenient to introduce a new integration 
variable 

x =  - [1+(1+i8a2z)~] 

in terms of which the function f becomes 

This integral can be recognized as a difference of parabolic cylinder functions 
(equation (19.5.4) of Abramowitz & Stegun 1965) which, by using a recursion formula 
(Abramowitz & Stegun, equation (19.6.4)), can finally be reduced to a closed form 
involving Whitaker's function (Abramowitz & Stegun, Section 19.3). 

The functionfcan now be used to directly calculate the behaviour of the moments, 
provided that the condition J > q mentioned at  the end of the last section is satisfied. 
We will omit the details except to note that the necessary integral is given in 
equation (7.722.2) of Gradshteyn & Ryzhik (1965). The final result is 

A.3. The negative moments 
From (A 2)) it is easy to show that the negative moments are related to the Mellin 
transform of the generating function as 

To evaluate this, we first write the exact expression for the generating function, 

(A 11) 

8 8  

#(z)  = 2J[1+ (1 +8u2z)f]-J 

where this expansion is clearly convergent for z > 0. Substituting this expansion into 
(A lo), introducing the new integration variable x = )[( 1 + 8a2z)i+ 11 and using the 
formula (3.191.2) of Gradshteyn & Ryzhik (1965) to evaluate the resulting integral, we 
find 

0 > Q > -J. (A 12) 
r(J+2q) r(aJ+q) E(J,q) = (2a2)QJ 
r(4) a-0 T((a+ 1) J + q +  1)' 
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We see that, provided that the sample length J is sufficiently long, negative moments 
of arbitrary order exist. 

The first term of the sum in (A 12) is exactly equal to (A 9), so that the expression 
for S(J, q),  valid for both positive and negative p, is 

Equation (25) of $6 immediately follows from (A 1) and 

(A 13) 

(A 13). 
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